Станки и машины станут прочнее: ученые ПНИПУ повысили эффективность плазменной сварки

Специалисты Пермского Политеха предложили метод, который обеспечит стабильность формирования сварочных валиков и высокое качество соединения деталей
Изображение от fxquadro на Freepik
Плазменная сварка применяется во многих сферах промышленности. С ее помощью соединяют металлические детали для медицинской аппаратуры, приборов, автомобилей, самолетов и ракет. Однако достичь постоянного качества сварного шва удается не всегда, а его дефекты уменьшают надежность и срок службы изделий.
Плазменная сварка — это способ неразрывного соединения металлов при помощи плазменного потока. В чем принцип его работы? В устройство, называемое плазмотроном, загоняется специальный плазмообразующий газ (азот, аргон и др.). При подаче тока на конце электрода возникает электрическая дуга. Попадая на нее, газ нагревается и в результате теплового расширения начинает на высокой скорости истекать из сопла устройства. Получившийся поток плазмы нагревает и плавит металл, температура в нем может достигать 30000 градусов Цельсия. Метод подходит для сварки практически любого металла: стали, меди, алюминия, чугуна и других, в том числе и тугоплавких — вольфрама, рения и молибдена.
Политехники выявили недостаток данного метода: некоторые материалы, например, титановые сплавы, н е удается сваривать достаточно качественно (наплавляемые валики формируются нестабильно, шов содержит дефекты). Ученые ПНИПУ модернизировали метод. Для формирования дуги они предложили использовать два независимых импульсных источника питания и перемещать плавящийся электрод возвратно-поступательными движениями.
«Под действием импульсного тока на конце плавящегося электрода образуются капли расплава. За счет перемещения электрода их можно принудительно отделять: частота переноса расплава растет, а размер капель, наоборот, уменьшается, что повышает качество наплавляемого валика. Кроме того, применение импульсного тока уменьшает разбрызгивание металла в процессе сварки, благодаря чему сварные швы получаются аккуратнее, ровнее, прочнее», — объяснил кандидат технических наук, доцент кафедры автоматики и телемеханики ПНИПУ Игорь Безукладников.
Запатентованный учеными ПНИПУ метод будет востребован в приборо-, автомобиле-, машино- и авиастроении, космической промышленности и других отраслях. Выход в коммерческую эксплуатацию готовится в 2024 году. На исследование выдан патент № 2806358. Разработка проводилась в рамках программы стратегического академического лидерства «Приоритет 2030».
Источник: Научная Россия.